Assignment – Applying Game Theory Overview Gaming and probability are intertwined. In fact, there is an entire discipline in mathematics called “Game Theory.” In this assessment, you will apply discrete and continuous probability distributions to games. There will be two parts: the first will concentrate on discrete probability distributions, and the second part will focus on continuous probability distributions. Instructions Part One – Data Table The theoretical probability of rolling a fair six-sided die is 1/6 for any specific single outcome, such as rolling a one. You want to test the theoretical probability by running an experiment. In this experiment, you need to roll a six-sided die 25 times. Record the outcome of each die roll. Create a discrete probability distribution using your outcomes as the probability. For example, if you rolled 4 fives out of your 25 total rolls, your probability would be 4/25. x – 1 – 2 – 3 – 4 – 5 – 6 P(x) Part Two – Discrete Probability Distribution After filling in the table above with your experimental probability, answer the following questions. Show all work for full credit. Calculations should be performed in Excel while answers including an explanation of steps using proper terminology are provided in a separate document. 1. What is the expected outcome for rolling a six-sided die using the discrete probability distribution table above? 2. What is the probability of rolling an even number according to the discrete probability distribution table above? How does this compare to the theoretical probability of 0.5? Explain why you think there is a difference between the theoretical probability and the experimental probability you found. 3. Create a binomial probability distribution based on the discrete probability distribution table above where a success is rolling an even number. Answer the following questions: How do you know this is a Binomial Probability Distribution? Explain by showing how this example fits all four properties of a Binomial Probability Distribution. Define n,p,q. What is the probability that you will roll exactly 12 even numbers? What is the probability that you will roll at least 12 even numbers? Find the expected number of even numbers that you will roll. Part Three – Continuous Probability Distribution Dice are a common tool used in several board games. One board game which utilizes two dice is Monopoly. While the outcomes of rolling two dice in this game would be a discrete random variable, we are interested in looking at a continuous random variable associated with Monopoly and its respective probability. The time it takes to finish a game of Monopoly is normally distributed with a mean of 120 minutes and a standard deviation of 30 minutes. Using this premise, answer the following questions. Show all work for full credit. Calculations should be performed in Excel while answers including an explanation of steps using proper terminology are provided in a separate document. Explain why this is a continuous probability distribution instead of a discrete probability distribution. What is the probability that a game lasts less than 45 minutes? What is the probability that a game lasts more than 160 minutes? What is the z-score of a game that lasts exactly 105 minutes? DONT DO THE ZIP PART General Requirements Submit one zipped file with your Excel spreadsheet containing all calculations and one document with data table and questions answered.

The price is based on these factors:

Academic level

Number of pages

Urgency

Basic features

- Free title page and bibliography
- Unlimited revisions
- Plagiarism-free guarantee
- Money-back guarantee
- 24/7 support

On-demand options

- Writer’s samples
- Part-by-part delivery
- Overnight delivery
- Copies of used sources
- Expert Proofreading

Paper format

- 275 words per page
- 12 pt Arial/Times New Roman
- Double line spacing
- Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Delivering a high-quality product at a reasonable price is not enough anymore.

That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more