Home>Computer Science homework help
For this assignment you will read the Amron et al. peer-reviewed journal article on cloud computing linked in Resources. As you read the article, take notes about the theories, models, and/or frameworks the authors used. Prepare to describe the main themes of the article’s literature view and explain the research findings. State specifically what business technical problem is answered by the research article.
Complete the following:
Describe the relevant theories, models, and/or frameworks the authors used to support their research.
Review at least one article cited by Amron et al.and explain how theyused its findings, theory, or framework to support their research.
Cite the article in current APA format.
Explain the findings from the Amron et al. research article.
State specifically what business technical problem is answered by this research article.
Communicate in a manner that is scholarly, professional, and consistent with expectations for information technology professionals.
Submission Requirements
Written communication: Write in a professional manner using current APA style and formatting with correct grammar, usage, and mechanics.
APA formatting: Resources and citations are formatted according to current APA style and formatting.
Length: 3–6 typed, double-spaced pages.
Font and font size: Times New Roman, 12 point.
Peer-Reviewed Journal Analysis Scoring Guide.
Cloud Computing Acceptance Among Public Sector Employees.
Academic Writer.
Capella Writing Center.
Evidence and APA.
Reference Page.
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 19, No. 1, February 2021, pp. 124~133
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v19i1.17883  124
Journal homepage:
Cloud computing acceptance among public sector employees

Mohd Talmizie Amron1, Roslina Ibrahim2, Nur Azaliah Abu Bakar3
1Universiti Teknologi MARA, Terengganu, Malaysia
2,3Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

Article InfoABSTRACT
Article history:
Received Jun 4, 2020
Revised Jul 20, 2020
Accepted Aug 27, 2020

Cloud computing is one of the platforms that drive organisations and users to
be better prepared for a simpler computing platform and offers significant
benefits to the quality of work. The transition from conventional computing to
the virtual world helps organisations to maximise their potential. However, not
all users can accept cloud computing adoption. Failure to understand the
factors of user’s acceptance will negatively impact the organisation’s mission
of empowering the technology. Therefore, this study proposes to assess to
what extent the users are accepting cloud computing. This study adopts the
unified theory of acceptance and use of technology (UTAUT) and six
technological and human factors assessed for the Malaysian public sectors.
Survey data from several ministries were analysed using partial least squares-
structural equation modelling (PLS-SEM). The study found out that
performance expectancy, compatibility, security, mobility, information
technology (IT) knowledge, and social influence had a significant impact on
the user’s intention to accept cloud computing. The results of this study
contribute to a clear understanding of the factors affecting the Malaysian
public sectors about cloud computing.
Behavioural intention
Cloud computing
Public sector
This is an open access article under the CC BY-SA license.

Corresponding Author:
Mohd Talmizie Amron
Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA, Cawangan Terengganu
21080 Kuala Terengganu, Terengganu, Malaysia

Recent technological advancements have brought a new dimension to the patterns of computerisation.
Previously, every organisation competed in the information communication and technology (ICT)
infrastructure with a variety of tools, devices, hardware, software, and more. However, in today’s rapidly
changing technology, with the transition to the industrial revolution 4.0 (IR 4.0) environment, it has opened a
new dimension to the world of computing. The emergence of cloud computing technology as a new platform
for computing has opened the eyes of technology industry players to further benefit from this innovation.
Many studies have proven that this technology provides many benefits to the industry and users such as its
ability to reduce operating costs, improve collaboration, more secure security levels, and more mobile
accessibility [1, 2]. Cloud computing allows more users and organisations to share resources that are optimised
for their users. This scenario will reduce user dependence on hardware and software installed on an individual
In 2018, the Asia Cloud Computing Association (ACCA) report listed Southeast Asian countries in
cloud computing implementation. The report placed Malaysia at 8th, far behind Singapore at the top [3]. The
report stated that Malaysia had a high potential for developing cloud computing applications as Malaysia
TELKOMNIKA Telecommun Comput El Control

Cloud computing acceptance among public sector employees (Mohd Talmizie Amron)
government had a clear policy and strategy to enable the delivery of cloud-based public services as well as to
drive the private sectors’ adoption of cloud technologies. However, some focus needs to be improved, such as
physical cloud infrastructure and internet speed to effectively reach the aims of the Malaysian Public Sector
ICT Strategies [4].
The Government of Malaysia has introduced a cloud-based unified communication and collaboration
services as an initiative to enhance cloud computing technology in the public sectors. This service is a platform
that integrates all communication channels such as email, live telecast calls, video conferences, instant
messaging, and big transfer files application. The centralisation of communication channels for ministries and
government agencies in the cloud is an effort to optimise the use of existing resources as well as a more
comprehensive saving effort. The implementation of the service known as MyGovUC covers all ministries and
almost all federal-level agencies since 2017.
However, according to reports of impact studies conducted by the regulatory agency on the service,
the use of this service was significantly lower than the number of account holders across Malaysia. The report
found out that 75% of users only used email applications, while only 43% used teleconferencing applications
and only half used big mail transfer applications. The study concluded that this service usage rates other than
email were due to a lack of knowledge and skills among consumers, a lack of infrastructure that could support
teleconference applications, and poor awareness of services.
Consequently, this study finds out that there is a significant problem in the adoption of cloud-based
services as its implementation cannot be matched with the usage of services and applications offered.
MAMPU’s report [5] showed that there is a gap that needs to be addressed, which is to determine factors that
influence these employees to accept cloud computing in their daily work. Then, a research model that could
evaluate the public sector employees’ acceptance of cloud-based services is developed, validated, and tested.
This study aims to identify the factors that can be considered, which can affect the cloud-based applications
used by the Malaysian public sectors. This study adopts the unified theory of acceptance and use of technology
(UTAUT) and six technological and human factors assessed for the Malaysian public sectors.

2.1.Cloud computing background
Cloud computing can be defined as “a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources that can be rapidly provisioned and released with
minimal management effort or service provider interaction” [6]. Cloud computing is used to share resources
(data and applications) in a cloud platform that host space over the internet. There are three types of deployment
model; software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) [6].
Besides, there are three types of service models in cloud computing; public cloud (provides services and
infrastructure to the public and organisations in a shared manner), private cloud (provides dedicated services
and support to one organisation), and hybrid cloud (a combination of public and private cloud). According to
the report by RightScale [7], a public cloud used for the business sector is 33% compared to the hybrid cloud,
which is 28% and private cloud, which is 17%.

2.2.Information technology innovation acceptance
The acceptance of new technologies by consumers or organisations varies depending on how
technology is going them perform the task faster and better [8]. The skill and magnitude of technology are tools
to facilitate the job, but in many issues and situations, its efficacy and benefits for users are subjective.
Davis [9] defined acceptance as the user’s decision on how and when to use the innovations. Thinking at the
issues which often prevent users from embracing and using technologies, many concerns need to be addressed
before users or organisations in adopting cloud computing. Multiple studies were done to assess the user’s
acceptance of cloud computing at both individual levels [10, 11] and organisational levels [12, 13].
Additionally, these studies incorporated other factors which may influence the acceptance of the user in diverse
situations. Theory of reasoned action [14], Theory of planned behavior [15], technology acceptance model [9],
diffusion of innovation [16], and task-technology fit [17] are among the theories used in the acceptance of
innovation. Meanwhile, UTAUT [18] is a great research framework incorporating eight acceptance theories
based on groundbreaking studies of individual acceptance. The UTAUT is intended to explain the user’s
intention to use an IS and subsequent behaviour. Thus, UTAUT is adopted in this study as an underlying
theoretical framework to explore the acceptability of users of cloud computing in the Malaysian public sector.

Venkatesh et al. [18], developed UTAUT, which clarified the user’s intention to use IS and subsequent
usage behaviour. The strength of UTAUT is that it focuses on so many models and gives an investigator a
wider view of all current models [19]. Applied research has been comprehensive on the UTAUT model. This
ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021:124 – 133
model offers a framework that does not only describes information technology (IT) and IS adoption but also
explains how these technologies and systems are used [20]. The UTAUT model contributes substantially to the
study of technology acceptance and uses because it can integrate different TAMs [18]. Table 1 shows the
authors, areas of study, and results of the study that used the UTAUT framework in their study. The results of
previous studies using the UTAUT framework showed different research findings, especially with various
suggestions on other factors relevant to the context of the study.

Table 1. The studies that used the UTAUT framework
Author Area of study Results/Findings
[21] RFID usage in HEI All four factors of UTAUT are significant in the study.
[22] e-Learning adoption All four factors of UTAUT are significant in the study.
[23] On-demand services
user acceptance
Using UTAUT2 and incorporated with DOI. Significant factors: personalisation,
compatibility, social influence, and perceived risk.
[24] Mobile banking
Using UTAUT2. Significant factors: Performance expectancy, effort expectancy, social
influence, habit, hedonic motivation, and perceived risk.
[25] Impact of social media
Incorporated with other factors. Significant factors: utilitarian value, hedonic value and social
[26] Web-based services
All four factors of UTAUT are significant in the study.
[27] Online banking adoption Incorporated with other factors. Significant factors: brand trust, performance expectancy,
perceived risk, initial trust.
[28] Internet banking
Incorporated with other factors. Significant factors: performance expectancy, effort
expectancy, compatibility, innovativeness, and perceived technology security.

This study proposes a research model to understand the cloud computing acceptance trend in the
Malaysian public sectors. It is comprised of three factors that originate from the UTAUT model, namely
performance expectancy, effort expectancy, and social influence. They have also incorporated six additional
factors (compatibility, security, mobility, IT knowledge, top management support and awareness) that derive
from a related study in cloud computing acceptance. Figure 1 depicts the proposed model of the study.

Figure 1. Research proposed model

3.1.Technological factors
The technological factors focus on technological aspects linked to cloud computing, features, and
factors that make this technology acceptable. These factors include performance expectancy, effort expectancy,
compatibility, security, and mobility. Each factor is explained by the basis of the selection of those factors. The
hypothesis of these factors to the acceptance of cloud computing technology is also included in this section.
a. Performance expectancy
Performance expectancy refers to the degree to which cloud computing is used in daily work, thus
strengthening the perceptions of individuals about innovations. Venkatesh et al. [18] also stressed that the
performance expectancy, as one assumes, the program would help them to achieve job performance gains. This
aspect also helps people who embrace innovation to have clear advantages compared to others [29]. Before
using cloud computing, the positive impacts are among the most important things organisations evaluate. The
organisation is looking for lucrative returns, and much investment is proliferating. Therefore, it is appropriate
to argue that performance expectation has a positive impact on the acceptance of cloud computing. Hence, the
TELKOMNIKA Telecommun Comput El Control

Cloud computing acceptance among public sector employees (Mohd Talmizie Amron)
study proposes that: H1. Performance Expectancy has a positive influence on behavioural intention to accept
cloud computing.
b. Effort expectancy
Effort expectancy described the degree of ease associated with system use [18]. User experience is
important to indicate an individual’s comfort while using technology. The invention should be useful and
helpful. However, innovation is hard to accept because it is difficult to learn, not user-friendly, and too
complex. It would not fully exploit new technology. Bozan et al. [30] addressed this component as one of the
key factors and found out that it had changed considerably among users in their relationship with behavioural
intentions. Thus, individuals with adequate expectations of effort have a more definite intention towards
accepting cloud computing. Hence, the study proposes that: H2. Effort Expectancy has a positive influence on
behavioural intention to accept cloud computing.
c. Compatibility
According to Rogers [16], compatibility refers to the degree of perceived innovation by current values,
past experiences, and desires of future adopted people. A less vague concept of a future supporter is more
compatible. Technology can either be consistent or incompatible 1) with sociocultural values or beliefs, 2) with
innovations that had previously been implemented or 3) with user requirements for innovation. Sallehudin [31]
explained that compatibility of the technological innovation with an existing infrastructure or technology either
sped up or delayed its organisational acceptance rate. In additions, it is essential to ensure that existing
infrastructure and systems are perfectly fit for the innovations to be applied so as not to be harmful after they
are used. Hence, the study proposes that: H3. Compatibility has a positive influence on behavioural intention
to accept cloud computing.
d. Security
Security aspects are critical in ensuring the protection of data and information stored in cloud
computing. Information system and technology security generally focus on protecting three main aspects of
security, namely confidentiality, integrity, and availability or known as “CIA” [32]. According to
Singh et al. [33], the cloud model based on the virtual machine environment reveals stored and shared data on
the cloud becomes vulnerable for the security breach. Therefore, it is essential for a standard security
mechanism that can be applied and implemented by all stakeholders, including service providers. Hence, the
study proposes that: H4. Security has a positive influence on behavioural intention to accept cloud computing.
e. Mobility
Mobility allows applications to use cloud computing to conveniently connect over the internet, which
is one of the technology features. Taib et al. [34] stated mobility as a ubiquitous connection which allows users
to access anytime and anywhere using the services remotely. Furthermore, mobility is the main predicted factor
for the adoption of the new mobile innovation by potential users. This should be an indicator of user acceptance
as reviewed by Saxena [35], which stressed the importance of mobility factor to implement new mobile and
electronic innovation. Hence, the study proposes that: H5. Mobility has a positive influence on behavioural
intention to accept cloud computing.

3.2.Human factors
Human factors are viewpoints in assessing human response to technology. There are four factors; IT
knowledge, top management support, social influence, and awareness. Each human factor is explained by the
basis of the selection of those factors. The hypothesis of these factors to the acceptance of cloud computing
technology is also included in this section.
a. IT Knowledge
Each individual must be armed with IT knowledge in order to accept new technology. The potential
of employees to utilise technology should be observed in order not to disrupt their adoption. According to
Sallehudin et al. [31], technology-savvy employees will lead to the adoption of IT technologies through
knowledge and innovation transformation. Competent staff can develop innovation and the need for new
technologies. This scenario provides the employee with added value in constantly seeking space to improve
work productivity. The internal expertise or IT knowledge of employees in the company is another key element.
The adoption of innovation is also expected to have an impact on IT or non-IT employees [36]. Hence, the
study proposes that: H6.IT knowledge has a positive influence on behavioural intention to accept cloud
b. Top management support
Support from top management is important for the successful implementation of innovation in the
organisation. Top management is a higher-level group managing the policies and decisions of the organisation.
A great move in the acceptance process is critical, and it will lead to the successful implementation of any
project. According to Sallehudin et al. [31], in the decision process, the power of top management serves as an
agent of transition. Top management support in cloud computing implementation can ensure employees’
ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021:124 – 133
efficiency and reaction. Thus, this factor refers to how the top management support affects the daily tasks of
the individual employee. Hence, the study proposes that: H7. Top Management Support has a positive influence
on behavioural intention to accept cloud computing.
c. Social influence
According to Venkatesh et al. [18], social influence refers to the degree to which a person sees what
others think about how the new system should be used. In this study, social influence tests how people are
affected by their environments by motivating them to consider and use cloud-based applications. A study by
Farah et al. [24] showed that the user relies heavily on feedback and experience from others who use new
technology in the first place. The study also showed that the most significant factor in estimating the outcome
for a user to take mobile applications is social influence. Hence, the study proposes that: H8. Social Influence
has a positive influence on behavioural intention to accept cloud computing.
d. Awareness
Awareness refers to the extent to which a person is aware of cloud-based applications services.
Implementing innovation will not work unless the innovation is used. Therefore, it is essential to provide people
with knowledge of the technologies. The use of new technology should not only be acknowledged to users but
also the opportunities to be utilised. When users realise the benefits of one technology, they are motivated and
attempt to use it. Hence, the study proposes that: H9. Awareness has a positive influence on behavioural
intention to accept cloud computing.

Quantitative data were collected using a questionnaire, and SmartPLS 3.2 software was used to
analyse the data and validate the research model. However, before that, three activities need to be considered
to ensure that the research objectives are met. These activities include instrument development, sample
preparation, and data collection. Besides, common method bias is also emphasised in this study as it involves
single-source research.

4.1.Instrument development
Based on the seven factors included in the measurement model, the instrument was developed to
collect data. Items of measurement for each factor were adopted from previous studies and had gone through
a validity and reliability process, which were face validity and expert content validity [37].

The study population comprises of Malaysian public sectors’ employees who are using MyGovUC
application services. In order to determine the sample size, the G*Power software has been used to calculate
the minimum required sample size with effect size medium (0.15), the power needed as 0.8 and eleven
predicators. The minimum number of respondents needed is 114. The individual sample is a public sector staff
comprising various positions from various government agencies that use MyGovUC services in their daily
work. Respondents must be of those who have access to MyGovUC and are experienced in using MyGovUC.
A convenience sampling and snowball technique were employed as they helped make the survey material
easier to distribute to target groups. Convenience sampling is a type of sampling whereby recruiting the
respondents that are most easily accessible [38]. Snowball technique involves the recruitment of respondents
who in turn, recruit other respondents.

4.3.Data collection
The data collection was done via three approaches which are surveying using Google Form, emailing
the questionnaire to the public relations officer (PRO) of each ministry for the escalation within the ministry
as well as distributing the paper surveys at the ministry offices. A total of 200 paper surveys were distributed,
and 190 forms were returned (95% response rate). A total of 169 responses were received from Google form,
resulting in a total of 359 responses. This response rate is above Baruch’s [39] recommendation of between
50% and 80% for an overall survey response. Only eight responses were rejected for not meeting the set criteria
and having incomplete answers. As a result, a total of 351 valid questionnaires with a response rate of 94%
were used for further data analysis. The respondents’ profile of the study is shown in Table 2.

4.3.Common method bias
Method bias can be an issue since the data collection only involved a single source. Harman’s single
factor test was carried out to determine whether bias was on the questionnaire data. Bias occurred when
Harman’s single factor test resulted in the variance value greater than 40% [40]. In this research, Harman’s
single factor test showed that the first factor had a value of 37.10% variance (less than the 40% limit of the
TELKOMNIKA Telecommun Comput El Control

Cloud computing acceptance among public sector employees (Mohd Talmizie Amron)
total variance). In this regard, the results of this test showed that the method of sampling of this study was
independent of the common bias variant.

Table 2. Total of respondents (𝑁 = 351)
Demographic Category Frequency
Gender Male 148
Female 203
Age Less than 25 55
26-35 142
36-45 111
More than 46 39
N/A 4
Academic Qualification Diploma 76
Bachelor 146
Master 74
PhD 15
Others 40

This study employs a PLS-SEM data analysis approach to measure the factors that influence a user’s
intention to accept cloud computing. The PLS-SEM is chosen in this study because its goals are to predict key
target variables, and the research model is an extension of an existing theory [41]. Therefore, predicting factors
that influence the intention of the consumer to consider cloud computing is appropriate for the objective of this
study. This study assesses multivariate normality using online Web Power tools. The analysis shows that the
p-value of Mardia’s multivariate skewness and kurtosis coefficients are less than 0.05, which confirm
multivariate non-normality data. The result is available at

5.1.Measurement model
As recommended by Ramayah et al. [42], the analysis should be carried out in three main assessment
criteria, namely the internal consistency reliability, convergent validity, and discriminant validity. Table 3
shows the validity of the measurement model by measuring the loadings, composite reliability (CR), average
variance explained (AVE), and variance inflation factors (VIF). Based on [43], values in Table 3 are passed
the threshold value for all criteria. Thus, the measurement model is accepted. The list of measurement
items can be found at The study reports the discriminant validity using the
heterotrait-monotrait (HTMT) ratio. If the HTMT value is greater than 0.85 [44], it indicates a severe issue in
discriminant validity. Table 4 shows that discriminant validity has been established as all values are less
than 0.85.

5.2.Structural model
The collinearity test is performed before the evaluation of the structural model. As indicated in
Table 2, the results of collinearity test (VIF) are lower than the threshold value of 5.0 [43]. The structural model
was assessed using the standard beta value, t-values, predictive relevance (𝑄2), and the effect sizes (𝑓 2).
Table 5 shows the assessment results of the structural model for all hypotheses.
It is shown that PER, COM, SEC, MOB, ITK, and SOC have a significant relationship with the
intention to accept cloud computing with PER (𝛽 = 0.235, 𝑡 = 3.324, 𝑝 < 0.05), COM (𝛽 = 0.123, 𝑡 = 1.731, 𝑝 < 0.05), SEC (𝛽 = −0.136, 𝑡 = 2.943, 𝑝 < 0.05), MOB (𝛽 = 0.429, 𝑡 = 8.051, 𝑝 < 0.05), ITK (𝛽 = 0.086, 𝑡 = 1.938, 𝑝 < 0.05), and SOC (𝛽 = 0.810, 𝑡 = 2.667, 𝑝 < 0.05. Thus, H1, H3, H4, H5, H6, and H8 are supported, while H2, H7, and H9 are rejected. 5.3.Evaluating the effect sizes The value for the determination coefficient (R2 = 0.632) is the sum of variance in the dependent variable structure described in the research model by all the independent variables. This study suggests that the independent variables (PER, COM, SEC, MOB, ITK, and SOC) normally explain 63.2% of variances in intention. As per Hair et al. [43], 𝑄2 refers to the measure of how the model and its parameter estimates and reconstructs well-observed values. The model has predictive relevance where the value of 𝑄2 > 0. Since the
value of 𝑄2 is 0.567, the cross-validated redundancy measures indicate that the structural model for this study
has predictive relevance. The details results were presented in Table 6.
ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021:124 – 133
Table 3. Measurement model result
Construct # Loading (>0.5) CR (>0.7) AVE (>0.5) VIF (<0.5) Performance Expectancy (PER) 10.860 0.791 0.938 3.008 2 0.913 3 0.906 4 0.877 Effort Expectancy (EFF) 1 0.880 0.776 0.945 3.534 2 0.894 3 0.864 4 0.899 5 0.867 Compatibility (COM) 1 0.851 0.795 0.939 3.105 2 0.877 3 0.922 4 0.914 Security (SEC) 1 0.844 0.713 0.952 1.855 2 0.862 3 0.871 4 0.875 5 0.818 6 0.872 7 0.791 8 0.818 Mobility (MOB) 1 0.901 0.817 0.957 1.889 2 0.899 3 0.915 4 0.895 5 0.910 IT Knowledge (ITK) 1 0.878 0.788 0.949 1.661 2 0.894 3 0.893 4 0.859 5 0.913 Top Management Support (TOP) 1 0.858 0.718 0.939 2.598 2 0.883 3 0.780 4 0.888 5 0.803 6 0.867 Social Influence (SOC) 1 0.841 0.746 0.922 3.047 2 0.888 3 0.871 4 0.854 Awareness (AWA) 1 0.835 0.663 0.8872.312 2 0.716 3 0.862 4 0.836 Behavioural Intention (BEH) 1 0.922 0.881 0.957 1.000 2 0.949 3 0.944 Actual Use (USE) 1 0.938 0.755 0.901 - 2 0.929 3 0.722 Table 4. Discriminant validity–HTMT analy USE AWA COM EFF ITK MOB PER BEH SEC SOC TOP USE AWA 0.681 COM 0.699 0.547 EFF 0.131 0.101 0.208 ITK 0.697 0.652 0.713 0.171 MOB 0.600 0.674 0.484 0.066 0.524 PER 0.603 0.517 0.680 0.207 0.758 0.457 BEH 0.633 0.588 0.743 0.148 0.823 0.484 0.819 SEC 0.422 0.555 0.439 0.171 0.534 0.423 0.517 0.597 SOC 0.614 0.727 0.609 0.126 0.619 0.499 0.588 0.678 0.640 TOP 0.453 0.599 0.525 0.165 0.525 0.465 0.555 0.601 0.605 0.818 Note: Criteria: discriminant validity is established at HTMT0.85 TELKOMNIKA Telecommun Comput El Control Cloud computing acceptance among public sector employees (Mohd Talmizie Amron) 131 Table 5. Path coefficient result Hypotheses Relationship β SE t-value p-value Decision H1 PER → BEH 0.235 0.071 3.324 0.000 Supported H2 EFF → BEH 0.081 0.061 1.320 0.093 Unsupported H3 COM → BEH 0.123 0.071 1.731 0.042 Supported H4 SEC → BEH -0.136 0.046 2.943 0.002 Supported H5 MOB → BEH 0.429 0.053 8.051 0.000 Supported H6 ITK → BEH 0.086 0.044 1.938 0.026 Supported H7 TOP → BEH -0.027 0.061 0.434 0.332 Unsupported H8 SOC → BEH 0.180 0.068 2.667 0.004 Supported H9 AWE → BEH -0.027 0.053 0.509 0.305 Unsupported H10 BEH → USE 0.626 0.044 14.380 0.000 Supported Table 6. Result of the effect size of each hypothesis Path Relationshipf2 Decision R2 Q2 H1 PER → BEH 0.054Small H3 COM → BEH 0.014Small H4 SEC → BEH 0.029Small H5 MOB → BEH 0.285Medium H6 ITK → BEH 0.013Small H8 SOC → BEH 0.031Small H10 BEH → USESupported 0.632 0.567 Actual UseSupported 0.359 0.291 For the effect size, the (𝑓 2) represents the relative impact of an independent variables on a dependent variable. As set by [45], the 𝑓 2 is measured by 0.02 representing small to medium, 0.15 represents medium to large, and 0.35 represents large effect. The supported independent variables (PER, 𝑓 2=0.054; COM, 𝑓 2=0.014; SEC, 𝑓 2=0.029; ITK, 𝑓 2=0.013; SOC, 𝑓 2=0.031) have small effect size on the dependent variable. There is only MOB (𝑓 2=0.285) that has a medium effect size on the dependent variable. The R2 for behavioural intention and actual use is 0.632 and 0.359, respectively, which is acceptable. 6. DISCUSSION Several insightful results can be summarised in this study. In the technological context, the intention to embrace cloud computing is positively linked to four constructs (performance expectancy, compatibility, security, and mobility). These findings underpin several previous studies [12, 31, 34]. Mobility (𝛽 = 0.429, 𝑓 2 = 0.285) is the most significant factor affecting the intention of accept cloud computing based on effect size analysis. This may result due to the accessibility of each employee through personal devices such as smartphones and tablets, which makes it easy for them to access the information they need. Therefore, cloud computing needs to be further supported by service providers and organisations to ensure smoother mobile connectivity for consumers in order to achieve more advantages by using this technology. The following supportive result is performance expectancy with 𝛽 = 0.235 and 𝑓 2 = 0.054, which has a positive relation to cloud computing acceptance. These findings confirm the outcomes and results of other scholars [24, 26]. Therefore, performance expectations significantly affect the intention of accepting cloud computing. With the optimism and positive attitude towards technology, consumers will be more comfortable doing good work and achieve better work quality. An excellent performance will lead to overall organisational excellence. While compatibility and security have a positive relationship with the acceptance of cloud computing with 𝛽 = 0.123 and 𝑓 2 =0.014, and 𝛽 = −0.136 and 𝑓 2 = 0.029, respectively, it still affects the size of the behavioural intention. This is possible because there is still a sense of uneasiness and concern for cloud computing capabilities compatible with the current work environment and security offered. However, two factors (top management support and awareness) that were expected to be positive did not occur in this study. The top management support factors showed a non-significant relationship to cloud computing acceptance denying studies from Alharbi et al. [29]. However, this finding is consistent with studies by Tajudeen [46]. This may be so due to employees’ feeling that their top management is not playing a role in providing clarity and is less supportive when they are having problems. Unfortunately, the awareness factor also does not support the hypothesis of this study. Although this factor is highlighted in the impact report of the ICT regulatory authorities in Malaysia, this study shows that awareness does not affect the intention of accepting cloud computing in the public sector. However, it can be concluded that despite some non-significant factors, efforts to continue to promote and improve the use of cloud-based applications should be continued by providing accurate disclosures and information about this technology. ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021:124 - 133 132 7. CONCLUSION AND FUTURE RESEARCH This study aims to identify the factors that can be considered, which can affect the cloud-based applications used by the Malaysian public sectors. The problems raised in the MAMPU report can be addressed by identifying factors that influence the Malaysian public sector to accept cloud-based services. Such variables are evaluated with the study model, and substantial test results will be taken into account in order to address the problems associated with the implementation of cloud services. The current study proposes a model with the UTAUT and other various factors to investigate user behaviours towards the acceptance of cloud computing. The proposed model affects user’s intention directly and positively. This study has identified the factors of user’s intention of cloud computing acceptance such as performance expectancy, effort expectancy, compatibility, security, mobility, IT knowledge, top management support, social influence, and awareness. The results of the SEM reveal that performance expectancy, compatibility, security, and mobility have a significant influence on cloud computing acceptance. This study has also revealed that IT knowledge and social influence are the factors that enhance user's intention behaviour towards the use of cloud-based application services. For future work, it is recommended that two groups of respondents are required to complete the survey to address the common method bias issues. Furthermore, this research has employed a quantitative data collection approach and work will be done in the future to evaluate the model by applying both the qualitative and quantitative approach. With these approaches, it may be helpful to provide a more in-depth explanation of the quantitative studies results. The qualitative part may include interview sessions and verification of quantitative research results by several experts in related fields, including CIOs of the public sector agencies. REFERENCES [1] S. Mokwena and C. Hlebela, “Factors affecting the adoption of software as a service in south african small medium enterprises,” 2018 Open Innov. Conf., pp. 1-6, October 2018. [2] M. T. M. Amron, R. Ibrahim, and S. Chuprat, “A review on cloud computing acceptance factors,” Procedia Computer Science, vol. 124, pp. 639-646, 2017. [3] ACCA, “Cloud Readiness Index 2018,” Asia Could Computing Association, 2018 [4] MAMPU, “The Malaysian Public Sector ICT Strategic Plan 2016-2020,” 2016. [5] MAMPU, “Report on the presentation of findings and analysis of impact studies (in Bahasa: Laporan pembentangan dapatan dan analisis kajian impak),” 2018. [Online]. Available: Kajian Impak Tech Talk.pdf. [Accessed: 27-May-2019]. [6] P. Mell and T. Grance, “Cloud Computing Definition,” Cloud Computing, 2009. [Online]. Available: [7] RightScale, “2019 State of the Cloud Report,” Flexera, 2019. [Online]. Available: releases/rightscale-2018-state-of-the-cloud-report. [Accessed: 03-Apr-2019]. [8] K. Krell, S. Matook, and F. Rohde, “The impact of legitimacy-based motives on IS adoption success: An institutional theory perspective,” Inf. Manag., vol. 53, no. 6, pp. 683-697, 2016. [9] F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Q., vol. 13, no. 3, pp. 319-340, 1989. [10] N. Alkhater, R. Walters, and G. Wills, “An empirical study of factors influencing cloud adoption among private sector organisations,” Telemat. Informatics, vol. 35, no. 1, pp. 38-54, 2018. [11] A. Goddard, et al., “The two publics and institutional theory – A study of public sector accounting in Tanzania,” Crit. Perspect. Account., vol. 40, pp. 8-25, October 2016. [12] M. A. Al-Sharafi, R. A. Arshah, and E. A. Abu-Shanab, “Factors influencing the continuous use of cloud computing services in organization level,” International Conference on Advances in Image Processing, pp. 189-194, 2017. [13] F. Mohammed, O. Ibrahim, and N. Ithnin, “Factors influencing cloud computing adoption for e-government implementation in developing countries. Instrument development,” J. Syst. Inf. Technol., vol. 18, no. 3, pp. 297-327, 2016. [14] M. Fishbein and I. Ajzen, “Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research,” Addison-Wesley, 1975. [15] I. Ajzen, “The theory of planned behavior,” Organ. Behav. Hum. Decis. Process., vol. 50, pp. 179-211, 1991. [16] E. M. Rogers, “Diffusion of Innovations, 3rd Edition,” 3rd ed. New York: The Free Press, 1983. [17] D. L. Goodhue, R. L. Thompson, “Task-technology fit and individual performance,” MIS Q., vol. 19, no. 2, 1995. [18] V. Venkatesh, et al., “User acceptance of information technology: Toward a unified view,” MIS Quarterly, vol. 27, no. 3, pp. 425-478, September 2003. [19] A. H. Chaputula and S. Mutula, “eReadiness of public university libraries in Malawi to use mobile phones in the provision of library and information services,” Libr. Hi Tech, vol. 36, no. 2, pp. 270-288, February 2018. [20] C. M. Chao, “Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model,” Front. Psychol., July 2019. [21] R. J. Raja Yusof, A. Qazi, and I. Inayat, “Student real-time visualization system in classroom using RFID based on UTAUT model,” Int. J. Inf. Learn. Technol., vol. 34, no. 3, pp. 274-288, May 2017. [22] N. M. Patel, et al., “E-learning adoption in rural-based higher education institutions in South Africa,” Open Innov. Conf., pp. 320-324, October 2018. TELKOMNIKA Telecommun Comput El Control Cloud computing acceptance among public sector employees (Mohd Talmizie Amron) 133 [23] J. A. L. Yeap, E. H. T. Yapp, and C. Balakrishna, “User acceptance of on-demand services,” International Conference on Research and Innovation in Information Systems, July 2017. [24] M. F. Farah, et al., “Mobile-banking adoption: empirical evidence from the banking sector in Pakistan,” Int. J. Bank Mark., vol. 36, no. 7, pp. 1386–1413, September 2018. [25] H. Sharma and S. P. Pillai, “Social media technology management in college of technology in Oman an empirical analysis,” J. Int. Educ. Bus., vol. 10, no. 2, pp. 147-163, September 2017. [26] M. Arif, K. Ameen, and M. Rafiq, “Factors affecting student use of Web-based services: Application of UTAUT in the Pakistani context,” Electron. Libr., vol. 36, no. 3, pp. 518-534, May 2018. [27] Y. Zhang, et al., “Exploring trust transfer between internet enterprises and their affiliated internet-only banks: An adoption study of internet-only banks in China,” Chinese Manag. Stud., vol. 12, no. 1, pp. 56-78, January 2018. [28] S. Rahi and M. Abd. Ghani, “The role of UTAUT, DOI, perceived technology security and game elements in internet banking adoption,” World J. Sci. Technol. Sustain. Dev., 2018. [29] F. Alharbi, A. Atkins, and C. Stanier, “Understanding the determinants of cloud computing adoption in Saudi healthcare organisations,” Complex Intell. Syst., vol. 2, no. 3, pp. 1-17, July 2016. [30] K. Bozan, K. Parker, and B. Davey, “A closer look at the social influence construct in the UTAUT Model: An institutional theory based approach to investigate health IT adoption patterns of the elderly,” Annu. Hawaii Int. Conf. Syst. Sci., pp. 3105-3114, 2016. [31] H. Sallehudin, R. C. Razak, and M. Ismail, “Factors influencing cloud computing adoption in the public sector: an empirical analysis,” J. Entrep. Bus., vol. 3, no. 1, pp. 30-45, June 2015. [32] I. O. for S. ISO/IEC 27002:2013, “Information technology - Security techniques - Code of practice for information security controls,” 2013. [33] K. P. Singh, V. Rishiwal, and P. Kumar, “Classification of data to enhance data security in cloud computing,” 3rd International Conference On Internet of Things, pp. 1-5, February 2018. [34] S. M. Taib, R. De Coster, and J. Nyamu, “Innovation diffusion of wearable mobile computing: Pervasive computing perspective,” in International Conference on Information Society, pp. 97-101, October 2016. [35] S. Saxena, “Enhancing ICT infrastructure in public services: Factors influencing mobile government (m-government) adoption in India,” Bottom Line, vol. 30, no. 4, pp. 279-296, September 2017. [36] H. P. Borgman, et al., “Cloudrise: Exploring cloud computing adoption and governance with the TOE framework,” Annual Hawaii International Conference on System Sciences, 2013, pp. 4425-4435, January 2013. [37] M. T. Amron, et al., “The validity and reliability evaluation of instruments for cloud computing acceptance study,” in 6th IEEE International Conference on Information Management (ICIM 2020), March 2020. [38] G. Saldanha, et al., “Data collection using questionnaires,” Research methodologies in translation studies, 2014. [39] Y. Baruch, “Response Rate in Academic Studies,” Human Relations, vol. 52, no. 4. pp. 421-438, April 1999. [40] B. J. Babin, M. Griffin, and J. F. Hair, “Heresies and sacred cows in scholarly marketing publications,” J. Bus. Res., vol. 69, no. 8, pp. 3133-3138, August 2016. [41] C. B. Astrachan, V. K. Patel, and G. Wanzenried, “A comparative study of CB-SEM and PLS-SEM for theory development in family firm research,” J. Fam. Bus. Strateg., vol. 5, no. 1,pp. 116-128, March 2014. [42] T. Ramayah, et al., “Partial least squares structural equation modeling (PLS -SEM),” Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0, 2nd ed., Pearson, 2018. [43] J. F. Hair, et al., “PLS-SEM or CB-SEM: updated guidelines on which method to use,” Int. J. Multivar. Data Anal., vol. 1, no. 2, January 2017. [44] R. B. Kline, “Principles and practice of structural equation modeling,” Principles and Practice of Structural Equation Modeling, 3rd ed., The Guilford Press, 2011. [45] J. Cohen, “Statistical Power Analysis for the Behavioral Sciences,” 2nd ed. Lawrence Erlbaum Associates, 1988. [46] F. P. Tajudeen, N. I. Jaafar, and S. Ainin, “Understanding the impact of social media usage among organizations,” Inf. Manag., vol. 55, no. 3, pp. 308–321, 2018. © 2021. This work is published under “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
The price is based on these factors:
Academic level
Number of pages
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more